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Abstract

The present study examines the crack problems in a functionally graded material (FGM) whose upper and bottom

surfaces are fully bonded with dissimilar homogeneous materials. A so-called generalized Kelvin solution based

boundary element method is used in the numerical examination. The multi-region method and the eight-node traction-

singular boundary elements are used for the crack evaluation. The layer discretization technique is utilized to ap-

proximate the depth material non-homogeneity of the FGM layer. The proposed method can deal with any depth

variations in both the shear modulus and the Poisson ratio of the FGMs. Results of the present analysis are compared

very well with the exact analytical solutions available in the literature, which demonstrates that the proposed method

can accurately evaluate the stress intensity factors (SIFs) for cracks in FGMs. The paper further evaluates the effect of

the functionally graded variations in the Poisson ratio on the stress intensity factors. The paper also assesses the ellip-

tical cracks in the FGM system. The paper presents the influence of both the non-homogeneity and the thickness of the

FGM layer on the three SIFs associated with the elliptical cracks.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Functionally graded materials (FGMs) are applicable to many engineering fields. For example, some

advanced turbine systems and earth-to-orbit winged planes use FGMs to achieve high efficiency and high

velocity and to protect some components from high temperature. FGMs for use at high temperature are

special composites that are usually made of ceramics and metals. In FGMs, the composite medium is

processed in such a way that the material properties are continuous functions of the depth or thickness

coordinate. The ceramics in an FGM offers thermal barrier effects and protects the metal from the metal
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corrosion and oxidation whilst the metallic composition toughs and strengthens the FGM (Jin and Batra,

1996; Chen and Erdogan, 1996).

The knowledge of fracture mechanics in FGMs is important in order to evaluate their integrity. Crack

problems in FGMs have become one of the hottest topics of active investigation in fracture mechanics
(Erdogan, 2000). By assuming an exponential variation of the elastic modulus in depth, Atkinson and List

(1978), Dhaliwal and Singh (1978) and Delale and Erdogan (1983) examined the crack problems in non-

homogeneous solids subjected to mechanical loads. Delale and Erdogan (1988) further examined the in-

terface crack problems in bonded materials with a FGM under a plane strain condition. Erdogan and

Ozturk (1992) found the solution of interface crack problems in bonded materials with a FGM subject to

antiplane shear loading. Erdogan et al. (1991a,b) investigated the plane elasticity problem for two bonded

half-planes containing a crack perpendicular to the interface and the mode III crack problem for two

bonded homogeneous half planes, respectively. Ozturk and Erdogan (1996, 1995) further investigated the
crack problems in the medium of two homogeneous half spaces bonded through a FGM layer containing a

penny-shaped interface crack and subjected to either torsion or tension.

In the above investigations, both the analytical methods such as integral equations (see Ozturk and

Erdogan, 1996) and the finite element method (e.g., Kim and Paulino, 2002; Gu et al., 1999) have been

employed to solve the crack problems in FGMs. It is well known that the boundary element method (BEM)

is one of the techniques that are particularly applicable to the calculation of stress singularities at crack

front where high accurate results are expected. As a result, BEM has been widely used in the analysis of

fracture mechanics (for review and references see Aliabadi, 1997). Another important feature associated
with BEM is that it only requires the discretization of the boundary elements. An examination of the

relevant literature available to the authors, however, indicates that there are few studies on crack problems

in FGMs using the powerful BEM (e.g., Yuuki and Cho, 1989; Pan and Amadei, 1999).

In the present study, we are going to use a novel BEM for the evaluation of fracture intensity factors for

cracks in FGMs. The novel BEM is the generalized Kelvin solution based boundary element method (GKS-

BEM) (Yue and Xiao, 2002). The GKS-BEM is based on the GKS in multi-layered elastic solids (Yue,

1995). The GKS is the solution of a multi-layered elastic solid of infinite extent subject to the actions of

concentrated point body forces. An important feature of Yue�s solution is that the stresses, strains and
displacements in the multi-layered elastic solids with arbitrary number of dissimilar layers can be calculated

with controlled accuracy and high efficiency. Yue and Xiao (2002) have incorporated Yue�s solution in the

BEM formulation. The numerical results have shown that the BEM can be used to solve crack problems in

multi-layered solids. In particular, the GKS-BEM is powerful in examining the crack problems in a layered

solid comprising a large number of dissimilar layers. In this study, we will extend the GKS-BEM to the

analysis of crack problems in FGMs.

In the GKS-BEM, the modified multi-region method is used in treating the two co-planar crack surfaces.

The eight-node traction-singular elements are introduced in representing the displacements and tractions in
the vicinity of a crack tip. The layered discretization technique is employed to represent the FGMs as a

system of many piece-wisely homogeneous layers. In particular, we examine the crack problems for two

dissimilar homogeneous materials fully bonded through a solid layer comprising a FGM. Fig. 1 illustrates

the coordinate system for the crack problems where either a penny-shaped crack or an elliptical crack is

located on the z ¼ 0 plane. This model is a simplified version of a class of physical problems where cracks

happen in ceramic coatings, metal/ceramic composites and interfacial zones with continuously varying

volume fractions or graded properties (Ozturk and Erdogan, 1996).

At first, we will briefly present the GKS-BEM. In particular, we introduce a technique to handle the
presence of infinite domains. Next, we will present a numerical evaluation of the crack problem that was

examined analytically by Ozturk and Erdogan (1996). For this example, the FGM shear modulus is as-

sumed to be l2 ¼ l1 expðazÞ. The shear modulus of the bottom layer is assumed to be l1 whilst the shear

modulus of the upper layer is l3 ¼ l1 expðahÞ, where h is the thickness of the FGM layer. A comparison
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between the present results and the results given by Ozturk and Erdogan (1996) demonstrates that the

proposed GKS-BEM can accurately calculate the stress intensity factors (SIFs) for the interface crack in

bonded materials with a FGM.

We further examine the crack problem by assuming that both the elastic modulus and the Poisson ratio

of the FGM layer are exponential functions of the vertical coordinate z. The paper evaluates the influence
of the Poisson ratios of the homogeneous materials and the FGM on the SIFs of the penny-shaped crack.

We then apply the GKS-BEM to examine the SIFs for an elliptical crack in the FGM system and examine
the influence of the FGM non-homogeneity and thickness on the three SIFs associated with an elliptical

crack.

2. The generalized Kelvin solution based boundary element method

In the ensuing, we will present a brief description of the GKS-BEM. More details of the mathematical

formulation for this GKS-BEM can be found in Yue and Xiao (2002).

2.1. The generalized Kelvin solution

For an ease of reference, the GKS presented by Yue (1995) is outlined briefly in the ensuing. The GKS is

the analytical solution for the elastostatic field in a layered solid of infinite extent due to the action of

concentrated point loads. The total number of the dissimilar layers is an arbitrary integer n. The dissimilar
homogeneous layers adhere an elastic solid of upper semi-infinite extent and another elastic solid of lower

semi-infinite extent. The interface between any two connected dissimilar layers is fully bonded. By referring

to Fig. 2, the jth layer occupies a finite layer region Hj�1 6 z6Hj of thickness hj (hj ¼ Hj � Hj�1), and has
the shear modulus lj and the Poisson ratio mj, where j ¼ 1; 2; 3; . . . ; n. The 0th layer occupies the upper

semi-infinite region �1 < z6 0, and has the shear modulus l0 and the Poisson ratio m0. The (nþ 1) th layer

occupies the lower semi-infinite region Hn 6 z < 1 and has the shear modulus lnþ1 and the Poisson ratio

mnþ1. Without loss of generality, it is assumed that the point load ðFx; Fy ; FzÞ is concentrated at a point

ð0; 0; dÞ in the k th layer ðHk�1 6 d 6HkÞ. Details of the GKS can be found in Yue (1995), Yue et al. (1999)
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Fig. 1. Geometry and coordinates for the crack problem in a two dissimilar homogeneous material bonded through a non-homo-

geneous interfacial zone.
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and Yue and Xiao (2002). In this study, the FGM layer is discretized as a system of n number of fully

bonded dissimilar sub-layers.

2.2. The boundary integral equations

The numerical formulation of the GKS-BEM in multi-layered elastic solids using the GKS can be briefly

summarized in the following. When the body forces are absent, the boundary integral equations for Yue�s
fundamental solutions can be expressed as follows:

CijðPÞujðPÞ ¼
Z
S
u�ijðP;QÞtjðQÞdSðQÞ �

Z
S
t�ijðP;QÞujðQÞdSðQÞ ð1aÞ

where uj and tj are, respectively, the displacements and tractions on the boundary surface S; u�ij and t�ij are
the displacements and tractions of the GKS; P and Q denote, respectively, the source and integration points

on S; and Cij is a coefficient dependent on the local boundary geometry at the source point P. The Cij can be

evaluated using the following equations,

CijðPÞ ¼ lim
e!0

Z
Se

t�ijðP;QÞdSðQÞ ð1bÞ

where Se is an infinitesimal spherical surface of center P and radius e enclosed in the solids.

It is noted that Eq. (1a) does not contain the integration on the layer interface surfaces because the GKS

strictly satisfies the interface conditions. So, it is not necessary to have the discretization along the layer

interfaces in this BEM formulation. Eq. (1a) can be discretized to obtain a set of linear equation system for
the solution of unknown boundary displacements and tractions.
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Fig. 2. A multi-layered elastic solid of infinite extent subjected to the body forces Fx and Fz concentrated at a point (0; 0; d).
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2.3. Numerical methods for crack tips in FGMs

It has been shown that the crack-tip field singularities and angular distributions in FGMs are as the same

as those in homogeneous elastic solids provided that the properties of the material are continuous and
piecewise differentiable (see Delale and Erdogan, 1983; Jin and Noda, 1994). The result is independent of

the form for material properties and the orientation of the crack. A detailed discussion on this subject can

be found in Gu and Asaro (1997).

The influence of the material gradients at the near crack tip manifests itself through the SIF. For the

crack problems under consideration, the stress state near the crack tip would always have the standard

square-root singularity provided h > 0 (Ozturk and Erdogan, 1996). Therefore, we can use the ordinary

BEM modeling developed for the regular square-root singularity for the present crack problem in the FGM

system. The computational methods for the SIF in homogeneous solids can further be adopted to calculate
the SIF for the penny-shaped crack and the elliptical crack in the FGM system. In the following, the

numerical methods adopted in GKS-BEM for the crack problems in FGMs are briefly introduced.

The eight-node isoparametric element is usually employed to discretize the boundary surfaces. The

numerical evaluations associated with the eight-node isoparametric elements have been very well discussed

in Lachat and Waston (1976). The isoparametric element, however, may not be able to effectively and

accurately model the displacement and stress fields near the crack tip. This is because the leading terms of

the asymptotic expansions for the displacements and stresses near a crack tip in a homogeneous solid have

the order of r1=2 and r�1=2, respectively, where r is the distance from the crack tip to a point within the solid.
It is evident that the ordinary polynomials are not able to model these behaviors. Special boundary ele-

ments exactly containing the leading terms are usually used to represent the displacement and stress fields

near the crack tip. Several singular elements are available for modeling the behavior near the crack tip

(Aliabadi, 1997). In this study, we adopted the traction-singular elements to model the singular fields

around the crack tip. Fig. 3 illustrates the shape functions of the traction-singular elements. They can be

expressed as follows (Luchi and Rizzuti, 1987; Jia et al., 1989).

For displacements, we have:

Ni
d ¼ 1

4
ð1þ nniÞ½1� gi þ

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffi
1þ g

p
gi�½nni þ

ffiffiffiffiffiffiffiffiffiffiffi
1þ g

p
ð

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ gi

p
þ giÞ � ni

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ gi

p
� nið1þ giÞ�

for i ¼ 1; 2; 3; 4 ð2aÞ

crack front

4 7 3

68

251

ξ

η

Fig. 3. A traction-singular element.
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Ni
d ¼ 1

2
n2i ð1þ nniÞ½ð

ffiffiffi
2

p
þ 2Þ

ffiffiffiffiffiffiffiffiffiffiffi
1þ g

p
� ð1þ

ffiffiffi
2

p
Þð1þ gÞ� þ 1

2
g2i ½1� gi þ

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffi
1þ g

p
gi�ð1� n2Þ

for i ¼ 5; 6; 7; 8 ð2bÞ

For tractions, we have:

Ni
t ¼

1ffiffiffiffiffiffiffiffiffiffiffi
1þ g

p Ni
d for i ¼ 1; 2; 5 ð3aÞ

Ni
t ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ gi

p
ffiffiffiffiffiffiffiffiffiffiffi
1þ g

p Ni
d for i ¼ 3; 4; 6; 7; 8 ð3bÞ

The shape functions (2) are used for the elements adjacent to a crack front on the crack faces or on the
auxiliary boundary surfaces. The shape functions (3) are used only for the elements closely adjacent to the

crack front on the auxiliary boundary surfaces, where the traction is singular.

For the discretization formulation of Eq. (1a) and when element l belongs to the traction-singular one,

we have the following integrals in the intrinsic coordinates ðn; gÞ:

Akj ¼
Z
Sl

N i
t ðQðn; gÞÞu�kjðQðn; gÞ;PÞJðn; gÞdndg ð4Þ

Bkj ¼
Z
Sl

N i
dðQðn; gÞÞt�kjðQðn; gÞ;PÞJðn; gÞdndg ð5Þ

where u�kj has the singularity of the order r
�1 and t�kj has the singularity of the order r

�2 as r ! 0, where r is
the distance from the source point P to the boundary field point Q.

Higher order singularities in the integrands can occur because of the introduction of the special shape

functions in the traction-singular elements. As a result, the numerical quadrature proposed by Luchi and

Rizzuti (1987) was used to solve the singular integrals. A sequence of coordinate transformations with

subdivision of the singular elements was used to remove the singularities from the integrands. Nine different

cases are to be dealt with in evaluating the above integrals, depending on the location of the source point P
(taken at nodal points only). More detailed discussions on the relevant topics may be found in Luchi and

Rizzuti (1987).

It is noted that a great number of the kernel functions for the eight-node isoparametric and traction-
singular elements in Eqs. (4) and (5) have to be evaluated. Because the GKS was expressed in a simple

unified matrix form, we used limited computational time to calculate the kernel functions for a FGM

system with a large number of the different layers.

2.4. Stress intensity factors calculations

After having obtained the numerical solution of the stresses and displacements in the FGM system

containing the penny-shaped or elliptical cracks, we can determine the SIF values using the present GKS-

BEM. The SIF values are related to the asymptotic behavior of stresses and displacements near the crack

tip. Using the traction-singular elements, we can obtain the SIF values by displacement extrapolation from

two nodal values. The extrapolation procedure involves the correlation of the computed displacements and

tractions with the theoretical values and extrapolates them to the crack front (Luchi and Rizzuti, 1987). To

show this procedure, we consider the crack front with the elements in Fig. 4.

For a mixed mode problem in which modes I, II and III are present, their corresponding SIF values KI,
KII and KIII at the corner point C in Fig. 4 can be linearly extrapolated from the computed crack face

opening displacements at the nodes A� A0 and B� B0 as follows:
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KI ¼
E

4ð1� m2Þ

ffiffiffi
p
2

r
2

ffiffiffi
2

p
ðuB2 � uB

0
2 Þ � ðuA2 � uA

0
2 Þffiffiffiffi

lc
p ð6aÞ

KII ¼
E

4ð1� m2Þ

ffiffiffi
p
2

r
2

ffiffiffi
2

p
ðuB1 � uB

0
1 Þ � ðuA1 � uA

0
1 Þffiffiffiffi

lc
p ð6bÞ

KIII ¼
E

4ð1þ mÞ

ffiffiffi
p
2

r
2

ffiffiffi
2

p
ðuB3 � uB

0
3 Þ � ðuA3 � uA

0
3 Þffiffiffiffi

lc
p ð6cÞ

This linear extrapolation procedure decouples the fracture modes I and II when the intact plane coincides

with the crack plane. In this case, the angle h is zero. In Eqs. (6a)–(6c), lc denotes the length of the crack

element adjacent to the crack front, and is measured perpendicular to the crack front.

2.5. Treatment of cracks in infinite domain

The FGM system in Fig. 1 occupies a region of infinite domain. In solving the crack problems in infinite

domains, a popular strategy used in BEM is to approximate the infinite body by a large finite body. This

treatment usually suffers two drawbacks, namely, large numbers of degrees of freedom and/or poor ac-
curacy. To overcome these drawbacks, Jia et al. (1989) presented a modified multi-region method for

solving crack problems in three-dimensional infinite bodies. This method can be characterized by an exact

representation of the infinite domain. Herein, the method is used to solve crack problems in the FGM

system occupying an infinite domain.

We consider a multi-layered solid of infinite extent containing a crack of arbitrary shape in Fig. 5. The

crack has two open surfaces. We can form the first closed curved surface by adding an open imaginary

surface in the solid to one of the two crack surfaces. We can also form the second closed curved surface by

adding the open imaginary surface in the solid to the other crack surface. The two closed curved surfaces
divide the entire solid into two regions. We denote the region within the first closed curved surface as the

region I. Its complement, the region outside the second closed curved surface is then denoted as the region

II. Each of the two regions I and II has a crack face on its boundary. The open imaginary surface serves a

common boundary for the two regions. The two crack faces are the actual boundaries. It is also noted that

the two crack faces occupy the same area and are separated. There is no open space between the two crack

faces before the load application.

Since the two regions share the same boundary geometry, the BIE�s for both the regions are the same

except for some signs change and slight differences in the CijðpÞ terms. Therefore, the coefficient matrix for
either I or II is sufficient to construct the matrix for the entire problem.

Fig. 4. Crack front elements.
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Using the discretized boundary integral equations, the matrix equation for the region I can be written as

½A�fuIg ¼ ½B�ftIg ð7Þ
where the matrix A is obtained from the integrals containing t�ij; the matrix B is obtained from the integrals

containing u�ij; uI and tI are the boundary displacements and tractions, respectively, for the region I.

The matrix equation for the region II is constructed by taking advantage of (7). It can be expressed as

follows:

½�A��fuIIg ¼ ½B�ftIIg ð8Þ
where A� is identical to A except for the diagonal terms, in which the contribution of the boundary at

infinity has to be taken into consideration; B is the same for both the regions. We further use the continuity
conditions for displacements and tractions over the common boundary,

uI ¼ uII
tI ¼ �tII

ð9Þ

Eqs. (7) and (8) are coupled. The equations for the entire problem domain can be written as

½G�fxg ¼ fRg ð10Þ
where G is the overall matrix of coefficients, its row and column numbers are equal to two times of the row

and column numbers of the single domain matrix, respectively; x is the vector of the unknowns and consists

of the displacements and tractions over the entire boundary except for the applied crack-face tractions. R is

the known vector containing the effect of known crack-face tractions.

3. Numerical verifications

In the ensuing, we will apply the GKS-BEM to the examination of the crack problems in the FGM

system. In this section, we will study the penny-shaped crack problems in bonded materials with a graded

interfacial region. This problem has been solved recently by Ozturk and Erdogan (1996) using an integral

transform method. So, we will compare the numerical results with those given by Ozturk and Erdogan
(1996). After this numerical evaluation and verification, we will apply the GKS-BEM to examine the in-

fluence of the functionally graded Poisson�s ratio on the SIF. In this application, we extended the crack

S∞

H2

0

k

n

Region II
Region I

Imaginary SurfaceCrack

n+1

H0

H k-1

H k

Hn-1

Hn

Fig. 5. Sketch illustrating the subdivision strategy for a crack in a multi-layered elastic solid.
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problem examined by Ozturk and Erdogan (1996) by allowing the Poisson ratio to be the exponential

function of the vertical coordinate z. Next, we further apply the GKS-BEM to examine elliptical crack

problems in the bonded materials with a graded interfacial region.

Ozturk and Erdogan (1996) analyzed the problem of a penny-shaped crack in two bonded materials with
a graded interfacial region. In this study, we re-examined this problem to demonstrate the effectiveness and

accuracy of the proposed numerical method in dealing with crack problems in the FGM system. The

axisymmetric crack problem for the FGM solid is described in Fig. 1. The FGM system consists of two

homogeneous materials bonded through a non-homogeneous interfacial region of thickness h. The penny-
shaped crack (the radius a ¼ 1) is subjected to a uniform tensile load p0 normal to the crack faces. In this

study, it is assumed that the Poisson ratio of the FGM system is constant (i.e. m1 ¼ m2 ¼ m3 ¼ m). The shear
modulus l2 is approximated by

l2ðzÞ ¼ l1 e
az; ð11aÞ

a ¼ 1

h
logðl3=l1Þ ð11bÞ

where h is the thickness of the interfacial layer; the constant a can be positive or negative.

For convenience, we chose the surface of a hemisphere in a homogeneous material (material 1) to form

the two regions for the BEM analysis. Because of symmetry, it was necessary only to analyze a quarter of

the hemisphere, such that only this quarter is discretized, with no elements on the plane of symmetry. Fig. 6

shows the surface discretization in 289 nodes and 88 boundary elements, in which there are 16 traction-

singular elements employed along the crack front. For 06 z6 h, the FGM is closely approximated by n
bonded layers of elastic homogeneous media. Each layer has the thickness equal to h=n and shear modulus

equal to l2ðzÞ at the top depth of the layer, i.e. for the ith layer, z ¼ Hi, where Hi ¼ ih=n, (i ¼ 1; 2; . . . ; n).
Two homogeneous materials bonded through the FGM are considered as semi-infinite domains for the

layers H0 and Hnþ1 respectively. For all the layers, the Poisson ratios are the same and equal to 0.3. Fig. 7

illustrates an approximation of the continuous depth variation of the shear modulus by a large number of

piece-wisely homogeneous layers, where n ¼ 20, h ¼ 0:5 and a ¼ 3:0. It can be observed from Fig. 7 that a

close approximation of the shear modulus variation can be obtained using a large number of n.

Crack surface

Auxiliary surface

Fig. 6. Boundary element mesh of a penny-shaped crack.
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We compared the GKS-BEM results with those given by Ozturk and Erdogan (1996). The following

four cases: a ¼ 0:4, 0.6, 2.0 and 3.0 are analyzed using the layered approximations and the comparison

results are shown in Table 1. From Table 1, it can be observed that the layered approximation (n ¼ 20)

resulted in excellent results for the SIF values. For a ¼ 0:4, the absolute differences between the results of

the two methods are equal to 1.289% and 0.053% for the normalized SIF KI and KII values respectively. For

a ¼ 0:6, the two absolute differences are equal to 1.3% and 0.12%. For a ¼ 2:0, the two absolute errors are
equal to 0.85% and 0.59%. For a ¼ 3:0, the two absolute errors are equal to 0.03% and 0.21%.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.0

0.1

0.2

0.3

0.4

0.5

Layered Approach
Power Function

z

Shear Modulus µ2(z)/µ1

Fig. 7. Approximation of the continuous depth variation of the shear modulus by a layered system of 20 piece-wisely homogeneous

layers at a ¼ 3:0 and h ¼ 0:5.

Table 1

Results of the normalized SIF values by the present study and Ozturk and Erdogan (1996) at h=a ¼ 0:5 and m1 ¼ m2 ¼ m3 ¼ 0:3

No. of a layered

FGM

a ¼ 0:4 a ¼ 0:6 a ¼ 2:0 a ¼ 3:0

KI

p0
ffiffiffiffi
pa

p KII

p0
ffiffiffiffi
pa

p KI

p0
ffiffiffiffi
pa

p KII

p0
ffiffiffiffi
pa

p KI

p0
ffiffiffiffi
pa

p KII

p0
ffiffiffiffi
pa

p KI

p0
ffiffiffiffi
pa

p KII

p0
ffiffiffiffi
pa

p

5 0.62253 0.01362 0.61030 0.02185 0.53497 0.06321 0.49312 0.07892

6 0.62340 0.01308 0.61153 0.02102 0.53918 0.06161 0.49810 0.07695

7 0.62395 0.01287 0.61197 0.02056 0.54126 0.06040 0.50265 0.07494

8 0.62462 0.01224 0.61343 0.01985 0.54524 0.05870 0.50740 0.07343

9 0.62487 0.01226 0.61378 0.01988 0.54593 0.05856 0.50799 0.07328

10 0.62547 0.01200 0.61389 0.01919 0.54745 0.05692 0.51013 0.07177

11 0.62549 0.01216 0.61469 0.01975 0.54735 0.05719 0.51021 0.07155

12 0.62584 0.01157 0.61529 0.01891 0.55085 0.05636 0.51509 0.07064

13 0.62536 0.01199 0.61455 0.01949 0.54940 0.05747 0.51317 0.07008

14 0.62617 0.01132 0.61570 0.01852 0.55184 0.05532 0.51592 0.06959

15 0.62651 0.01151 0.61621 0.01882 0.55156 0.05501 0.51480 0.06885

16 0.62618 0.01180 0.61567 0.01926 0.54991 0.05615 0.51425 0.07039

17 0.62668 0.01148 0.61645 0.01877 0.55318 0.05649 0.51760 0.07109

18 0.62671 0.01114 0.61654 0.01827 0.55471 0.05491 0.51739 0.06895

19 0.62601 0.01156 0.61554 0.01887 0.55292 0.05600 0.51836 0.07037

20 0.62619 0.01157 0.61577 0.01889 0.55210 0.05652 0.51747 0.07047

Ozturk and Erdogan 0.6133 0.0121 0.6026 0.0177 0.5436 0.0506 0.5135 0.0684
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As the layer discretization number n increases, the SIF values (KI and KII) from the GKS-BEM stably

approached to the exact solutions. The results presented in Table 1 demonstrated that accurate SIF values

for crack problems in FGMs could be obtained by using the GKS-BEM together with the layered dis-

cretization technique. In the ensuing, we will present the results of applying the GKS-BEM to two crack
problems in the FGM system. An examination of the relevant literature revealed that there were no

publications available on the SIF values of the two cracks problems.

4. Further engineering applications

4.1. Application A: influence of Poisson’s ratio

The crack problem in the FGM system examined by Ozturk and Erdogan (1996) adopted the as-

sumption that the Poisson ratios of the three materials are constant and equal. They examined the effects of

the Poisson ratios m on the normalized SIF values for fixed values of h=a and l3=l1. Their findings indicated

that the Poisson ratios have limited effects on the SIF values in general whilst the effects are substantial for

the relatively large negative values of aa or very small values of l3=l1 under the mode I loading.

In the ensuing, we will present the results of using the GKS-BEM to examine the effect of the Poisson
ratios on the SIF values of the crack problem in the FGM system. We adopted the depth variation

functions of the material modulus and Poisson ratio that were used by Gu and Asaro (1997) and Noda and

Jin (1993) for cracks in FGM materials. The elastic modulus and Poisson�s ratio of the FGM are assumed

to vary with the depth z according to the following exponential rules:

E2ðzÞ ¼ E1 e
a1z; m2ðzÞ ¼ m1 e

a2z ð12aÞ

where a1 and a2 are the material constants representing the material gradients; E1 and m1 are the values of
elastic properties of the material 1. The parameters a1 and a2 have the dimension of 1/length. The elastic

properties of the material 3 are described by

E3 ¼ E1 e
a1h; m3 ¼ m1 e

a2h ð12bÞ

Fig. 1 shows the crack problem in the FGM system where the penny-shaped crack is located at z ¼ 0:0
plane. The corresponding results are listed in Table 2. Similar to the results given by Ozturk and Erdogan

(1996), the present results indicate that the SIF values do not change significantly with the changes of the

Poisson ratio. The difference in the Poisson ratios between the material 1 and the FGM layer induces

limited variations of the mode I and II SIF values. For the ratio E3=E1 is very small, the Poisson ratios have
some evident effects on the mode I and II SIF values. In Table 2, it can be further observed that the mode II

SIF values increase and the mode I SIF values decrease as a1 increases.

4.2. Application B: elliptical crack problem

In the ensuing, we will present the GKS-BEM evaluation of an elliptical crack in the FGM system as

shown in Fig. 1. The Poisson ratios of the materials 1 and 3 and the FGM layer are constant and equal to

0.3. The shear modulus l2 is governed by Eq. (11a). The crack parameter values, as shown in Fig. 8, are

assumed to that b=a ¼ 0:5 (a ¼ 1:0) and p0 ¼ 1. The elliptical crack is located at the z ¼ 0 plane in Fig. 1.

For symmetry, we used only a quarter of the region for the GKS-BEM discretization. Fig. 9 shows the

surface discretization results with 289 nodes and 88 boundary elements. In addition, we have 16 traction-

singular elements used along the crack front. The two sides of traction-singular elements at the crack face

are perpendicular to the tangent at the crack front of the elliptical crack. The two sides are intersected with
the crack front. As a result, we can obtain the high accurate SIF values.
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Table 2

Influence of the Poisson ratio on the SIF values of a penny-shaped crackat the condition h=a ¼ 0:5, m1 ¼ 0:01 and m3 ¼ m1 ea2h

m3 a1 ¼ 1:0 a1 ¼ 0:5 a1 ¼ 0:1

KI

p0
ffiffiffiffi
pa

p KII

p0
ffiffiffiffi
pa

p KI

p0
ffiffiffiffi
pa

p KII

p0
ffiffiffiffi
pa

p KI

p0
ffiffiffiffi
pa

p KII

p0
ffiffiffiffi
pa

p

0.01 0.59108 0.05828 0.61847 0.02947 0.64126 0.00366

0.1 0.59210 0.05328 0.61967 0.02410 0.64259 )0.00210
0.2 0.59217 0.04884 0.61991 0.01933 0.64295 )0.00714
0.3 0.59079 0.04480 0.61916 0.01534 0.64175 )0.01141
0.4 0.58741 0.04101 0.61562 0.01166 0.63819 )0.01499
0.5 0.58099 0.03728 0.60864 0.00843 0.63089 )0.01778

a1 ¼ �0:1 a1 ¼ �0:5 a1 ¼ �1:0

0.01 0.65243 )0.01029 0.67578 )0.03971 0.70150 )0.07608
0.1 0.65387 )0.01619 0.67749 )0.04590 0.70348 )0.08255
0.2 0.65437 )0.02137 0.67828 )0.05134 0.70469 )0.08824
0.3 0.65324 )0.02572 0.67738 )0.05578 0.70424 )0.09283
0.4 0.64969 )0.02923 0.67396 )0.05920 0.70127 )0.09613
0.5 0.64228 )0.03178 0.66646 )0.06129 0.69427 )0.09789

Crack face

Auxiliary surface

Fig. 9. Boundary element mesh for a quarter of an elliptical crack.

p0

r = ab

aθ

Fig. 8. An elliptical crack at the interface of a homogeneous and a FGM subject to a uniform tension load p0.
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To verify the present method, we first examined the SIF values of an elliptical crack in a homogeneous

solid using the GKS-BEM method. We found that the maximum absolute difference in the SIF values

between the GKS-BEM method and the exact solution in Tada et al. (2000) was less than 1.00% along the

crack tip. In order to further verify the GKS-BEM method for crack problems in FGM system, we adopted
different numbers of layered approximations for the FGM layer. Table 3 shows that the SIF values (KI, KII,

KIII) would become the steady values as the layer number n for the FGM layer increases. It is evident that

the SIF trend to converge to a steady value as n becomes sufficiently large. Similar findings were also given

in Wang et al. (2000) and Noda and Wang (2002).

Fig. 10 shows the results of the normalized crack opening displacement (COD) along the major axis of

the elliptical axis in z-direction, ðwþ � w�Þ=w0. In Fig. 10, the normalization factor w0 is the maximum

relative crack surface displacement for the corresponding pressurized plane strain crack (the crack length,

2a), i.e. w0 ¼ ð1þ jÞp0a=2l1, j ¼ 3þ 4m. Note that for a ¼ 0, the COD corresponds to the case of a homo-
geneous medium.

Figs. 11 and 12 shows the influences of the material non-homogeneity parameter a on the SIF KI, KII,

respectively. The corresponding SIF values are also listed in Tables 4 and 5. The influence of the material

non-homogeneity parameter a on the mode III SIF KIII is given in Table 6. It can be observed in Fig. 11 that

as a increases, the mode I SIF tends to decrease. This result is due to the increase in stiffness of the half

Table 3

The SIF values of an elliptical crack in the bonded materials through a FGM at m1 ¼ m2 ¼ m3 ¼ 0:3, h=a ¼ 0:5 and a ¼ 3:0

No. of a

layered

FGM

h ¼ 0:000� 44.999� 90.000�
KI

p0
KII

p0
KIII

p0
KI

p0
KII

p0
KIII

p0
KI

p0
KII

p0
KIII

p0

5 0.59199 0.07982 0.00000 0.72419 0.09278 0.01701 0.79517 0.10324 0.00000

10 0.61814 0.07039 0.00000 0.75519 0.07811 0.01720 0.82750 0.08538 0.00000

15 0.62670 0.06773 0.00000 0.76547 0.07395 0.01725 0.83827 0.08002 0.00000

20 0.62985 0.06627 0.00000 0.77068 0.07114 0.01712 0.84148 0.07765 0.00000

25 0.63338 0.06641 0.00000 0.77514 0.07103 0.01694 0.84873 0.07621 0.00000

30 0.63429 0.06507 0.00000 0.77581 0.06905 0.01708 0.84670 0.07521 0.00000

35 0.63640 0.06561 0.00000 0.77814 0.06935 0.01707 0.85175 0.07433 0.00000

40 0.63867 0.06490 0.00000 0.77933 0.07028 0.01733 0.85313 0.07494 0.00000

50 0.63913 0.06550 0.00000 0.78116 0.07052 0.01743 0.85538 0.07545 0.00000

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
O

D
W

(r
)

major axis r/a

α=-3.0
α=0
α=3.0

Fig. 10. Results for the z-component of the normalized COD along the major axis of an elliptical crack wðrÞ ¼ ðwþ � w�Þ=w0 where

w0 ¼ ð1þ jÞp0a=2l1, h=a ¼ 0:5 and m ¼ 0:3.
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space z > 0. For a fixed a value, the mode I SIF value has a maximum value at the crack tip of the minor
axis and a minimum value at the crack tip of the major axis. In Figs. 11 and 12, it can be shown that the

mode II SIF values are considerably smaller than the mode I SIF values. As the absolute values of a de-

crease, the mode II SIF values tend to zero. In Table 6, the maximum absolute difference between the mode

III SIF values estimated by the numerical method (a ¼ 0) and the exact solution in a homogeneous solid

(KIII ¼ 0:0) is 0.084%, which further indicates the GKS-BEM results are accurate. It is also clear that the

mode III SIF values for the different a values are small by comparing the mode I and II SIF values in Tables

4 and 5.

We further carried out the analysis for many cases of h=a to examine the influence of the different values
h=a on the SIF values. Figs. 13 and 14 show the variations of the mode I and II SIF values for an elliptical

crack with h=a. The corresponding SIF values are also listed in Tables 7 and 8. Table 9 presents the

variations of the mode III SIF with h=a. When l3 ¼ l1 expðahÞ, a ¼ 0:5 and h ¼ 0:0, the FGM system
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Fig. 11. Mode I SIF for an elliptical crack in the FGM with different a values at h=a ¼ 0:5 and m ¼ 0:3.
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Fig. 12. Mode II SIF for an elliptical crack in the FGM with different a values at h=a ¼ 0:5 and m ¼ 0:3.
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Table 4

Variation of the SIF value (KI=p0) with a and h at h=a ¼ 0:5 and a ¼ 1:0

h (�) a

)3.0 )2.0 )1.0 )0.6 )0.4 )0.2 0.0 0.2 0.4 0.6 1.0 2.0 3.0

0.000 0.87482 0.83276 0.78894 0.77134 0.76273 0.75426 0.74580 0.73745 0. 72928 0.72120 0.70548 0.66973 0.63913

11.248 0.90441 0.85897 0.81220 0.79370 0.78455 0.77558 0.76659 0.75773 0. 74910 0.74063 0.72433 0.68677 0.65495

22.499 0.97967 0.92574 0.87114 0.84971 0.83931 0.82894 0.81884 0.80893 0. 79903 0.78960 0.77115 0.72921 0.69502

33.749 1.07209 1.00622 0.94128 0.91615 0.90404 0.89223 0.88039 0.86903 0. 85773 0.84687 0.82579 0.77854 0.74148

44.999 1.15667 1.07858 1.00354 0.97495 0.96146 0.94778 0.93468 0.92190 0. 90912 0.89730 0.87377 0.82215 0.78116

56.250 1.22285 1.13535 1.05262 1.02157 1.00670 0.99207 0.97784 0.96400 0. 95052 0.93755 0.91274 0.85774 0.81496

67.500 1.26866 1.17389 1.08577 1.05281 1.03689 1.02137 1.00651 0.99205 0. 97783 0.96403 0.93774 0.88046 0.83542

78.750 1.30090 1.20123 1.10937 1.07492 1.05851 1.04274 1.02729 1.01229 0. 99792 0.98378 0.95676 0.89838 0.85369

90.000 1.30946 1.20829 1.11500 1.08048 1.06376 1.04770 1.03206 1.01688 1. 00222 0.98785 0.96075 0.90136 0.85538

Table 5

Variation of the SIF value (KII=p0) with a and h at h=a ¼ 0:5 and a ¼ 1:0

h (�) a

)3.0 )2.0 )1.0 )0.6 )0.4 )0.2 0.0 0.2 0.4 0.6 1.0 2.0 3.0

0.000 )0.14817 )0.09481 )0.04646 )0.02925 )0.02104 )0. 01321 )0.00551 0.00181 0.00860 0.01497 0.02660 0.04962 0.06550

11.248 )0.14954 )0.09570 )0.04703 )0.02960 )0.02141 )0. 01349 )0.00586 0.00140 0.00825 0.01459 0.02633 0.04951 0.06532

22.499 )0.15360 )0.09802 )0.04817 )0.03057 )0.02233 )0. 01411 )0.00641 0.00090 0.00798 0.01436 0.02617 0.04938 0.06539

33.749 )0.15880 )0.10050 )0.04876 )0.03061 )0.02201 )0. 01363 )0.00576 0.00176 0.00891 0.01550 0.02746 0.05117 0.06679

44.999 )0.16380 )0.10241 )0.04835 )0.02923 )0.02043 )0. 01193 )0.00372 0.00405 0.01133 0.01803 0.03039 0.05457 0.07052

56.250 )0.16849 )0.10419 )0.04797 )0.02839 )0.01918 )0. 01050 )0.00208 0.00587 0.01322 0.02021 0.03275 0.05717 0.07350

67.500 )0.17688 )0.10919 )0.05045 )0.02993 )0.02033 )0. 01117 )0.00255 0.00560 0.01333 0.02057 0.03359 0.05855 0.07553

78.750 )0.18456 )0.11417 )0.05324 )0.03222 )0.02240 )0. 01306 )0.00414 0.00428 0.01215 0.01954 0.03286 0.05839 0.07478

90.000 )0.18923 )0.11724 )0.05517 )0.03358 )0.02356 )0. 01396 )0.00497 0.00352 0.01160 0.01910 0.03277 0.05853 0.07545

Table 6

Variation of the SIF value (KIII=p0) with a and h at h=a ¼ 0:5 and a ¼ 1:0

h (�) a

)3.0 )2.0 )1.0 )0.6 )0.4 )0.2 0.0 0.2 0.4 0.6 1.0 2.0 3.0

0.000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

11.248 )0.01881 )0.01227 )0.00602 )0.00373 )0.00263 )0.00163 0.00061 0.00035 0.00121 0.00204 0.00363 0.00647 0.00827

22.499 )0.03248 )0.02099 )0.01014 )0.00625 )0.00437 )0.00254 0.00084 0.00079 0.00236 0.00381 0.00635 0.01121 0.01412

33.749 )0.03916 )0.02505 )0.01183 )0.00713 )0.00484 )0.00264 0.00056 0.00143 0.00330 0.00502 0.00809 0.01391 0.01694

44.999 )0.03886 )0.02479 )0.01154 )0.00672 )0.00449 )0.00235 0.00024 0.00176 0.00356 0.00528 0.00841 0.01413 0.01743

56.250 )0.03267 )0.02078 )0.00955 )0.00545 )0.00355 )0.00172 )0.00005 0.00171 0.00329 0.00472 0.00729 0.01208 0.01460

67.500 )0.02364 )0.01499 )0.00683 )0.00386 )0.00244 )0.00109 )0.00020 0.00143 0.00254 0.00363 0.00553 0.00899 0.01193

78.750 )0.01220 )0.00768 )0.00341 )0.00183 )0.00111 )0.00042 )0.00025 0.00088 0.00147 0.00202 0.00308 0.00486 0.00568

90.000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
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degenerates as a homogeneous solid. In this degenerated system, the corresponding SIF are presented in the

handbook of the SIFs (Tada et al., 2000). In Figs. 13 and 14, we can observe that the mode I and II SIF

values have different variation patterns as the h=a increases. As the h=a increases, the mode I SIF values

decreases whilst the mode II SIF values increase. In general, the mode I and II SIF values become slowly
and stably decreasing or increasing as the h=a is greater than 1.0. As shown in Table 9, the maximum values

of the mode III SIF are 0.00118 and 0.00584 for h=a ¼ 0:1 and h=a ¼ 4:0, respectively. Hence, the values of
the mode III SIF do not increase significantly as h=a increases.
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Fig. 14. Variation of Mode II SIF values for an elliptical crack in the FGM with h=a for different h values at a ¼ 1:0, m ¼ 0:3, and

a ¼ 0:5.
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Fig. 13. Variation of Mode I SIF values for an elliptical crack in the FGM with h=a for different h values at a ¼ 1:0, m ¼ 0:3, and

a ¼ 0:5.
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5. Summary and conclusions

A novel GKS-BEM has been used for accurate and efficient evaluations of the crack problems in FGM

material systems. The GKS-BEM is based on the GKSs in multi-layered elastic solids. Traction-singular

elements were used to capture the singularities at the crack tip in the FGM and the multi-region method of

the conventional BEM was adopted to treat the two co-planar crack surfaces. The layered discretization

technique was used to approximate the FGM as a large number of dissimilar sub-layers.

The paper presented the calculation results of the SIF values for a penny-shaped or an elliptical crack in
the two bonded materials through a FGM layer. The accuracy and efficiency of the GKS-BEM method

Table 7

Variation of the SIF value (KI=p0) with h=a and h at a ¼ 1:0 and a ¼ 0:5

h h

0.000 11.248 22.499 33.749 44.999 56.250 67.500 78.750 90.000

0.0 0.74580 0.76659 0.81884 0.88039 0.93468 0.97784 1.00651 1.02729 1. 03206

0.1 0.73818 0.75872 0.81045 0.87164 0.92575 0.96868 0.99721 1.01817 1. 02301

0.2 0.73399 0.75420 0.80523 0.86532 0.91861 0.96149 0.98993 1.01003 1. 01474

0.3 0.73049 0.75053 0.80079 0.86014 0.91269 0.95480 0.98272 1.00268 1. 00713

0.4 0.72780 0.74763 0.79750 0.85601 0.90767 0.94931 0.97668 0.99694 1. 00131

0.5 0.72512 0.74481 0.79432 0.85252 0.90336 0.94408 0.97118 0.99107 0. 99547

0.6 0.72349 0.74276 0.79142 0.84941 0.90030 0.94061 0.96703 0.98609 0. 99049

0.7 0.72089 0.74074 0.78994 0.84746 0.89757 0.93667 0.96307 0.98123 0. 98700

0.8 0.71903 0.73870 0.78796 0.84514 0.89534 0.93383 0.95976 0.97900 0. 98292

0.9 0.71838 0.73755 0.78616 0.84321 0.89280 0.93207 0.95724 0.97609 0. 98035

1.0 0.71691 0.73649 0.78461 0.84173 0.89141 0.92981 0.95489 0.97362 0. 97774

2.0 0.70804 0.72729 0.77501 0.83033 0.87865 0.91418 0.93786 0.95551 0. 95903

3.0 0.70661 0.72595 0.77314 0.82772 0.87490 0.91093 0.93436 0.95139 0. 95535

4.0 0.70569 0.72449 0.77175 0.82619 0.87322 0.90984 0.93306 0.94988 0. 95374

Table 8

Variation of the SIF value (KII=p0) with h=a and h at a ¼ 1:0 and a ¼ 0:5

h h

0.000 11.248 22.499 33.749 44.999 56.250 67.500 78.750 90.000

0.0 )0.00551 )0.00586 )0.00641 )0.00576 )0.00372 )0.00208 )0.00255 )0.00414 )0.00497
0.1 0.00175 0.00205 0.00230 0.00263 0.00490 0.00468 0.00548 0.00695 0.00701

0.2 0.00556 0.00580 0.00602 0.00667 0.00918 0.00967 0.01042 0.01120 0.01120

0.3 0.00815 0.00835 0.00862 0.00909 0.01163 0.01254 0.01304 0.01370 0.01380

0.4 0.00998 0.01025 0.01063 0.01095 0.01354 0.01440 0.01478 0.01544 0.01569

0.5 0.01111 0.01149 0.01169 0.01222 0.01485 0.01552 0.01590 0.01682 0.01713

0.6 0.01191 0.01210 0.01216 0.01275 0.01513 0.01606 0.01659 0.01731 0.01758

0.7 0.01219 0.01279 0.01292 0.01306 0.01613 0.01622 0.01703 0.01740 0.01785

0.8 0.01280 0.01285 0.01315 0.01345 0.01616 0.01640 0.01704 0.01800 0.01815

0.9 0.01321 0.01334 0.01370 0.01394 0.01615 0.01645 0.01714 0.01801 0.01844

1.0 0.01325 0.01348 0.01403 0.01414 0.01619 0.01645 0.01715 0.01816 0.01844

2.0 0.01340 0.01350 0.01430 0.01440 0.01630 0.01645 0.01722 0.01835 0.01843

3.0 0.01352 0.01363 0.01420 0.01444 0.01630 0.01646 0.01723 0.01852 0.01865

4.0 0.01352 0.01365 0.01420 0.01444 0.01630 0.01646 0.01724 0.01854 0.01866
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have been demonstrated. The SIF values are in very good agreement with the results available in the rel-
evant literature. In this study, we have successfully approximated the FGM layer as a fully bonded sub-

layer system with the n ¼ 90 in analyzing the influence of the FGM thickness on the SIF values. The

corresponding computational time in a personal computer was limited. It is believed that the high accuracy

of the SIF values can be obtained for any crack problems in the FGM material systems.

The paper further showed that the different Poisson�s ratio of the FGM system do not have significant

effects on the SIF values. The paper further examined the influence of material non-homogeneity param-

eters a and the thickness ratio h=a on the SIF of the elliptical crack. We consider that the present GKS-

BEM method can be further applied to various crack problems involving the FGM materials.
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